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Abstract. We propose a numerical method for extracting the spectrum of decay rates of 
time correlations in chaotic dynamical systems. The sum of the first p decay rates is related 
to the asymptotic behaviour of the time correlation of suitable exterior forms of order p. 
The method is applied to maps of the interval and to the Henon map. 

Time correlation functions have attracted a renewal of interest in the study of chaotic 
systems both from a physical and a mathematical point of view. As a matter of fact, 
rigorous results are obtained only for certain classes of chaotic maps, in particular 
those satisfying Smale's axiom A, for which an exponential decay for functions which 
are continuously differentiable has been proved (Ruelle 1976a). Other examples are 
provided by billiards (see Bunimovich 1985). In more general cases, the leading mixing 
rate can be extracted from a direct analysis of the large time behaviour (i.e. T + 03) of 
the correlation function C A ( T ) ,  defined by 

CA(T) = lim T A ( x ( t + T ) ) A ( x ( t ) )  d t  -(A)' 
T-m T 1 0  

(1) 

where x (  t )  =f 'x(O) is the time evolution in the phase space R D  and A is a smooth 
real function on R D  (an observable). In the above expression, the time average is 
assumed to define a unique ergodic probability measure p, the physical measure 
(Eckmann and Ruelle 1985), over the invariant set of J: 

However, apart from exceptional cases, the detailed analysis of time correlations 
is in general a very difficult task. The essential fact (to be discussed here) is that the 
time behaviour of such functions is typically determined by a superposition of complex 
exponentials. More precisely, a spectrum of mixing rates exists and one expects 

= ( A b (  t + T))A(X( r))) - w2 

CA( T )  = cke-OAT eiwhT (2) 
k 

where the coefficients ck depend on the choice of the observable, whereas the exponents 
ak - iwk do not. From (2) it follows that the power spectrum of the signal A ( x (  t ) ) ,  i.e. 
the Fourier transform of CA(7), has poles located at zk = wk + iak. Such poles at complex 
frequencies are then interpreted as resonances of the dynamical system (Ruelle 1986). 
The determination of the resonances is an important characterization of the dynamics 
and some methods have been recently proposed (Isola 1988), (Baladi et a1 1989), 
(Christiansen et al 1990). 
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In this paper we shall use the fact that suitable combinations (e.g. sums) of the 
first p exponents are related to the leading decay rate of the time correlations computed 
for exterior forms of order p, as pointed out in the context of the theory of Fredholm 
determinants for axiom A systems (Ruelle 1976b). This permits us to obtain the leading 
mixing rates from numerical computations with appropriate p-forms. We have applied 
this method both to piecewise linear expanding maps of the interval, where exact 
results are known, and to more general non-hyperbolic systems, like the logistic map 
of the interval and the HCnon map of the plane. 

Let us first see, in a somewhat heuristic manner, how the exponents defined above 
can be related to the eigenvalues of a transfer operator 2. For the sake of simplicity, 
we consider the case of one-dimensional maps f :  [0,1] + [0,1], with an absolutely 
continuous invariant measure F(dx)  = +o(x) dx. In this case, is an eigenfunction, 
with eigenvalue v o =  1, of the operator 2 which maps a function h onto 

f v = x  

where DJ is the derivative of f  taken at y. It is easy to realize that 2’ is dual to f in 
the sense that 

By virtue of this relation the spectral properties of 2’ are seen to be crucial for the 
analysis of correlation functions. It turns out that the spectrum of this operator can 
be decomposed into a discrete part (i.e. the set of all the isolated eigenvalues with 
finite multiplicity) and an essential part, whose relative sizes depend on a delicate way 
on the functional space 2 is acting on (see Keller 1989, Eckmann 1989, Ruelle 1990, 
Collet and Isola 1990). However, in order to make the following argument clearer, we 
shall make the simplified assumption (which is known to be fulfilled if the map is 
analytic and expanding) that the integral kernel G(x, y )  = S(x -fy) admits the spectral 
representation 

G(x, Y )  =C vi+i(x)+i(y) ( 5 )  
I 

involving the eigenvalues ordered as 1 = v a s  Iv,l 2 Iv21 . . . , as well as right eigenfunc- 
tions 

and left eigenfunctions 
c 

which satisfy the orthonormality and completeness relations: 5 di(x)Gj(x) dx = Sii and 
Xi  Gi(x)di(y) = S(x-y).  In particular, since t,b0 is the invariant probability density, c $ ~  

is equal to 1. It is easy to verify that ergodicity requires 
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Furthermore, the (stronger) mixing property can be expressed by the fact that \ v i /  < 1 
for izo. 

Now, since we have assumed the existence of an ergodic invariant measure p, we 
can write 

(A(x(t + Q))A(x(~) ) )  = 1 p(dx)A(fx)A(x) .  (8) 

Thereafter, using the definition (3) of the transfer operator as well as property (4), we 
get 

(A(x(r+ T))A(X(t)))= 1 [ dy P ( ~ x ) A ( Y ) W Y  -JTx)A(x) 

= I dy A(Y)(~'A$o)(Y) (9) 

where we have used p (dx)  = $clo(x) dx. This is a general expression which is valid 
regardless of the choice of the observable A. Finally, we exploit the spectral representa- 
tion ( 5 )  to obtain 

( A ( x ( f + 4 ) A ( x ( N ) =  C v: [ A(x)4i(x)p(dx)  1 A(Y)$i(Y) dy. (10) 

C A ( T ) =  C Ci(vi)' (11) 

and we recover (2) with the identification vk = e-aA+iwh. The real part of -log vk is 
therefore the mixing rate and its imaginary part provides the frequency of the corre- 
sponding oscillation (note that the resonances associated to vk are located at *i log vk) .  
Furthermore, if we assume that the eigenvalues {vi} have different moduli, we see from 
(10) and (1 1) that whenever the function A has non-zero projection on the eigenfunction 
$,(x), the asymptotic behaviour of the sum (11) is dominated by the term v; (notice 
that if 1 > (v l l  > Ivzl). . . , then the resonance i log v1 is the one nearest to the real axis). 
For this reason, even in simple cases it is not easy to extract the next-to-nearest 
resonances i log v2, i log v3.. . , as they control exponentially damped corrections to 
the asymptotic behaviour of the numerical signal. 

In order to overcome this difficulty, we shall develop a numerical technique which, 
in a sense, is analogous to the method introduced by Benettin er a1 (1980), for the 
determination of Lyapunov spectra. In that case, one looks at the growth rate of a 
p-dimensional volume obtained by the external product of p different random vectors. 
Such an exponential rate is given by the sum of the first p Lyapunov exponents. In a 
similar way, we look at the time correlation functions of exterior forms of order p, 
obtained by the external product of p arbitrary functions. In the appendix, we shall 
show that their leading decay rate is related to the sum of the logarithms of the first 
p eigenvalues of the transfer operator. Operationally, we consider a set of p linearly 
independent functions Ak(x) (k = 1,2, .  . . , p )  and we compute each of them over p 
different trajectories 

i = O  

For i = 0 the RHS ol' (10) gives (A)2 SO that 

i = l  

xdt)  =f'x,(O) I = l , . .  . , p  (12) 
where the x,(O)'s are random initial conditions. If just one time series is available one 
could simply use p time shifted versions of this trajectory, provided that the shifts are 
larger than the correlation time. 
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Then, a p-form w ( ~ )  can be constructed from the determinant of the p x p  matrix 

( 0 ) k I  = A k ( X I ) *  (13) 

0 whose elements are given by 

A convenient choice for the above set of functions is A k ( x )  = x k - l ,  which yields 

a" ' )=detO= n ( x I - x I . ) .  (14) 
/ > I '  

For instance, for p = 2, we get 

Since x I (  t )  and x2(  r )  are independent trajectories we have ( x I x 2 )  = ( x ) ' ,  and 

i(a(2)(t + ~ ) a ( ~ ) (  t ) )  = ( x (  t + ~ ) x (  t)) - ( x ) ~ .  (16) 

The average in the LHS of (16) is therefore the correlation function of x. According to 
the previous discussion, its behaviour for large 7 is dominated by vl (= v0- vl). In a 
similar way (see the appendix), the asymptotic decay of a p-form correlation function 
is dominated by the product of the first p eigenvalues: 

1 
c ( P ) ( ~ ) ~ - ( w ( ~ ) ( ~ + ~ ) w ( ~ ) ( ~ ) ) - ( Y ~ Y ,  ... v ~ - ~ ) ~  for large 7 (17) 

P! 
(notice that from (14) one gets (U") )  = 0 for any p > 1). 

A preliminary test of this method is obtained from the analysis of the piecewise 
linear expanding map x (  t + 1) = x (  t ) /  e for 0 4 x (  t )  4 8 and x (  t + 1) = ( x (  t )  - e)/( 1 - e) 
for 0 < x (  t )  4 1, of the interval [0, 13 onto itself (the Bernoulli map), for which the 
spectrum of the transfer operator is real and positive. The eigenvalues are (Mori er a1 
1981): 

(18) 

Figure 1 shows the correlation decay of the p-forms (17) for p = 2,3,4,  5, and 6 = 0.9. 
The extracted mixing rates are in a very good agreement with the theoretical prediction 

More interesting examples can be obtained by studying systems which exhibit 
intermittent behaviour, for example when the bifurcation parameter is close to a value 
where an attracting periodic orbit settles down. In this case, the real part of the nearest 
resonance can be straightforwardly associated with the period of the cycle which is 
about to become stable, whereas its imaginary part can be related to (the inverse of) 
the mean time the chaotic trajectory spends in the neighbourhood of such a cycle. We 
have analysed two situations of this type: 

(1) the logistic map x --* a x (  1 - x )  for CY = 1 + 4 - E, with E = that is very close 
to the stable window of period 3 (see Collet and Eckmann 1980); 

(2) the HCnon map x ( t  + 1) = y(  I )  + 1 - a x (  r ) 2 ,  y (  r + 1) = 6 x (  t )  of the plane, with 
the choice a = 1.31, 6 = 0.3 (we recall that for a = 1.3, 6 = 0.3 there exist an attracting 
periodic orbit of period 7). 

In both these two examples we do not know what the spectrum of the operator 2' 
is, and therefore we shall speak about (complex) exponents (as they are defined in 
(2)), rather than eigenvalues. In order to extract such exponents from the numerical 

Vi = ei+I + (1 - ~ ) ~ + l .  

n;:; VI. 
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T 
Figure 1. C‘”’ (T)  plotted against T, with p = 2, 3, 4, 5 ,  for the Bernoulli map with 0 = 0.9, 
obtained by a numerical integration of 2.5 x IO-’ steps. The slopes of the linear scaling 
exhibited by In C‘p’ (  T )  are respectively 0.8201 f 0.0005, 0.599 * 0.001,0.393 f 0.002,0.232 * 
0.003, to be compared with the theoretical values nf-’ U,. see (18). 

signal we have adopted both a crude fitting procedure and a more refined technique 
based on Pad6 approximants (Isola 1988). 

In the logistic map, with CY as above, the behaviour of (standard) correlations is 
determined by the pair of complex conjugate exponents whose numerical values are 
=-0.017 f i 2 ~ / 3  (the Lyapunov exponent is A = 0.208). The 2-form correlation function 
therefore exhibits an oscillation of period three, as expected. Figure 2 shows, however, 
that this oscillation disappears using the 3-form, for which the leading decay rate is 
given by the sum of the above exponents =-0.034. In addition, this result suggests a 
more appropriate indicator for the extraction of the decay rate, when modulated 
correlations (coming from the presence of a complex pair) are observed. 

The Hinon map exhibits another interesting feature, illustrated in figure 3. The 
behaviour of the p-form correlation functions C‘p’( 7) for p = 2,3,4,  5 is well described 
by periodic oscillations with a damping factor given by exp[-O.O20(p - l ) ~ ] .  Note that 
the maximum Lyapunov exponent is A = 0.247. More precisely, the Fourier transform 
of C‘” exhibits peaks at the frequencies iok = k x 2 ~ / 7 ,  with k = 1,2, .  . .6 .  Furthermore, 
the functions C‘p’, with p 3 3, oscillate with frequencies given by combinations of the 
wk’s (i.e. k x 2rr/7 where k = 0, 1,. . .6). This indicates that at least the first six of the 
oscillations are not present, for p s 6. 

Using the cycle expansion procedure (Artuso et al 1990) in the Hinon map, a 
preliminary calculation of the zeros of the Fredholm determinant d(z)  = det( 1 - 2 2 )  
in the complex plane (Christiansen et a1 1990) also suggests that many eigenvalues of 
2 might have degenerate modulus. However, since the HCnon map is not hyperbolic, 
the cycle expansion is very slowly convergent. We shall report elsewhere a detailed 
study of the location of resonances for the HCnon map, at varying the control para- 
meters. At present, a direct analysis of time correlations of exterior forms for non-axiom 
A systems can be very important to support these types of results. 
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Figure 2. Absolute value of the correlation function of the exterior forms of order p = 2 
(broken curve) and p = 3 (full curve) plotted against T, for the logistic map with a = 
3.82832.. . . 

Part of this work was done using the workshop ‘Complexity and Evolution’ at the 
Institute for Scientific Interchange ( I S I ) ,  Torino, Italy. SI and GP acknowledge the 
financial support of ISI .  A special thanks to P Cvitanovii: for useful suggestions and 
discussions. 

Appendix 

The time average of a function A of p independent trajectories x l ,  x2, . . . xp is given 
by an integral over a probability measure obtained as the direct product of physical 
measures, 

Assuming p (dx)  = &(x) dx, it is useful to introduce a p x p diagonal matrix (R),(x) = 
+o(xi)S, such that 

Then, if O(x) denotes the p x p matrix [0(x)lj ,  = Aj(x,), we can write the average in 
(17) as 

(otP’(t+ 7)o(P)( t ) )=  n dx, det[(Oof)(x)] det[O(x)] det[R(x)]. (A3) 
n = l  ’I 

Using the properties of the delta function and recalling that the product of determinants 
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Figure 3. Absolute value of the correlation function of the exterior forms of order p = 2 
(figure 3 ( a ) ) ,  p = 3 (figure 3 ( b ) ) ,  p = 4  (figure 3 ( c ) ) ,  and p = 5 (figure 3 ( d ) ) ,  for the Henon 
map with a = 1.31, p = 0.3, obtained by a numerical integration of 4 x lo7 steps. The slopes 
extracted from the linear scaling exhibited by In IC‘”’ / (T) for T large enough are respectively 
0.020*0.001, 0.041 *0.001, 0.060*0.002, and 0.080*00.003. 

where we have introduced the p x p matrix P obtained by integrating over the variable 
X: 

(PI, = J ~ ( Y I  -fx)Aj(x)+o(x) dx = [ p T + o A j l ( ~ ~ ) *  (AS) 

Inserting (A5) into (A4), we get 

(U ( ’ ) (  t +  T ) u ( ~ ) (  1 ) )  = n dyl det[OP(y)] = p !  det Q 
I = I  ’I 

where 
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and the factor p! comes from a permutation of the y,'s. Making use of the notation 
(FI G) = 5 dy F ( y ) G ( y )  and of the spectral representation (lo), one can verify that the 
p x p matrix Q in (A6) is given by 

Now, the determinant of Q can be written as 
P P 

i l = l  i , = l  
det[Ql = C . C Ei l . . . i , Q i l ~ Q i ~ 2  . Qi,p 

by means of the Levi-Civita tensor E ~ ~ . . . ~ , ,  . Putting everything together, the correlation 
function of a p-form is given by the expression 

oc W P 
C " ' ( T ) =  . . . C Eil.. .ip C . . . 

i l = l  i ,= l  rl =O r,=O 
( VrI . . . Yr,,)' 

On the other hand, it is easy to verify that 

is identically zero unless rI , r2, . . . , rp are distinct, e.g. regard (A10) as the determinant 
of the matrix (M), =jAi(y)$r,(y) dy. This means that, for T+CO,  the leading term in 
(A9) is given by ( vovl . . . vp-I)r and the estimate (17) follows. 
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